

Assignment: Writing class Geometry

1. Take your **UsingMath**, and separate out the geometry-related methods into a separate class named **Geometry**. So that we can keep our **UsingMath** code undisturbed, also make a **UsingGeometry** that will call the **Geometry** class methods. Here are the steps to follow:

- Create a class named **Geometry** – do not include a **main** method in this class!
- Move all geometry-related methods from **UsingMath** into the **Geometry** class. (The methods **calculateCircumference** and **calculateCircleArea**).
- Create a class name **UsingGeometry**. Include a **main** method in this class.
- Copy the code from the **main** method of **UsingMath** into the **main** method of the **UsingGeometry**. Delete the methods **calculateCircumference** and **calculateCircleArea** from the **UsingGeometry** class code.
- At this point, the **UsingGeometry** will not know to find the methods **calculateCircumference** nor **calculateCircleArea** in the **Geometry** class. To let the compiler know which class to find these methods, put “**Geometry .**” in front of each of these methods. Note that this is similar to how we call **Math** class methods – using the class name and a period in front of the method name, such as: **Math.sqrt(2)**.
- Run your **UsingGeometry** and confirm the output is the same as it was for the **UsingMathClass**. Here is the expected output of **UsingMath**:

```
The value of pi is: 3.141592653589793
The circumference of a circle of radius 5.0 is equal to 31.41592653589793.
The area of a circle of radius 5.0 is equal to 78.53981633974483.
```

2. To your **UsingGeometry** class, add the functionality to calculate the hypotenuse length of a right-angle triangle.

- Create a new method named **hypotenuseLength** in the **Geometry** class. This method should take two parameters of type **double** that represent the two legs of a right-angle triangle. It should also return a **double** value that is the calculated hypotenuse length using the formula: $h = \sqrt{a^2 + b^2}$.
- Create a new method named **printHypotenuseLength** in the **UsingGeometry** class. This method should take two parameters of type **double** that represent the two legs of a right-angle triangle, and print, when called with parameter values 3.0 and 4.0, exactly the output (with or without the line wrapping):

```
A right-angle triangle with side lengths of 3.0 and 4.0 has a hypotenuse
length of 5.0.
```

The complete and final output of the program is shown here.:

```
The value of pi is: 3.141592653589793
The circumference of a circle of radius 5.0 is equal to 31.41592653589793.
The area of a circle of radius 5.0 is equal to 78.53981633974483.
A right-angle triangle with side lengths of 3.0 and 4.0 has a hypotenuse
length of 5.0.
```

After coding and testing your solution, copy your working code from each class into the appropriate box on the following page.

Assignment: Writing class Geometry

After coding and testing your solution, copy your working code from each class into the appropriate box below.

```
// class Geometry
```

```
// class UsingGeometry
```